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CHAPTER I. SPACE

§ 1. THE AXIOM OF THE PARALLELS AND
NON-EUCLIDEAN GEOMETRY

In Euclid’s work, the geometrical achievements of the ancients Historical
reached their final form: geometry was established as a closed and ?tackground

complete system. The basis of the system was given by the geo-
metrical axioms!, from which all theorems were derived. The great
practical significance of this construction consisted in the fact that it
endowed geometry with a certainty never previously attained by any
other science. The small number of axioms forming the foundation
of the system were so self-evident that their truth was accepted without
reservation. The entire construction of geometry was carried through
by a skillful combination of the axioms alone, without any addition of
further assumptions; the reliability of the logical inferences used in the
proofs was so great that the derived theorems, which were sometimes
quite involved, could be regarded as certain as the axioms. Geometry
thus became the prototype of a demonstrable science, the first instance
of a scientific rigor which, since that time, has been the ideal of every
science. In particular, the philosophers of all ages have regarded it
as their highest aim to prove their conclusions ‘“by the geometrical
method.”

Euclid’s axiomatic construction was also important in another
respect. The problem of demonstrability of a science was solved by
Euclid in so far as he had reduced the science to a system of axioms.
But now arose the epistemological question how to justify the truth of
those first assumptions. If the certainty of the axioms was transferred

1 Euclid distinguished between axioms, postulates and definitions. We may
be allowed for our present purpose to include all these concepts under the name of

axioms.
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Chapter I. Space

to the derived theorems by means of the system of logical concatena-
tions, the problem of the truth of this involved construction was
transferred, conversely, to the axioms. It is precisely the assertion
of the truth of the axioms which epitomizes the problem of scientific
knowledge, once the connection between axioms and theorems has
been carried through. In other words: the implicational character of
mathematical demonstrability was recognized, i.e., the undeniable fact
that only the implication “if @, then 4" is accessible to logical proof.
The problem of the categorical assertion “‘a is true b is true”’, which is
no longer tied to the ““if”’, calls for an independent solution. The truth
of the axioms, in fact, represents the intrinsic problem of every science.
The axiomatic method has not been able to establish knowledge with
absolute certainty; it could only reduce the question of such know-
ledge to a precise thesis and thus present it for philosophical discussion.

This effect of the axiomatic construction, however, was not recog-
nized until Jong after Euclid’s time. Precise epistemological formula-
tions could not be expected from a naive epoch, in which philosophy
was not yet based upon well-developed special sciences, and thinkers
concerned themselves with cruder things than the truth of simple and
apparently self-evident axioms. Unless one was a skeptic, one was
content with the fact that certain assumptions had to be believed
axiomatically; analytical philosophy haslearned mainly through Kant’s
critical philosophy to discover genuine problems in questions previously
utilized only by skeptics in order to deny the possibility of knowledge.
These questions became the central problems of epistemology. For
two thousand years the criticism of the axiomatic construction has
remained within the frame of mathematical questions, the elaboration
of which, however, led to peculiar discoveries, and eventually called
for a return to philosophical investigations.

The mathematical question concerned the reducibility of the axio-
matic system, i.e., the problem whether Euclid’s axioms represented
ultimate propositions or whether there was a possibility of reducing
them to still simpler and more self-evident statements. Since the
individual axioms were quite different in character with respect to their
immediacy, the question arose whether some of the more complicated
axioms might be conceived as consequences of the simpler ones, i.e.,
whether they could be included among the theorems. In particular,
the demonstrability of the axiom of the parallels was investigated.
This axiom states that through a given point there is one and only one
parallel to a given straight line (which does not go through the given
2
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point), i.e., one straight line which lies in the same plane with the first
one and does not intersect it. At first glance this axiom appears to be
self-evident. There is, however, something unsatisfactory about it,
because it contains a statement about infinity; the assertion that the
two lines do not intersect within a finite distance transcends all possible
experience. The demonstrability of this axiom would have enhanced
the certainty of geometry to a great extent, and the history of mathe-
matics tells us that excellent mathematicians from Proclus to Gauss
have tried in vain to solve the problem.

A new turn was given to the question through the discovery that it
was possible to do without the axiom of parallels altogether. Instead
of proving its truth the opposite method was employed: it was demon-
strated that this axiom could be dispensed with. Although the exist-
ence of several parallels to a given line through one point contradicts
the human power of visualization, this assumption could be introduced
as an axiom, and a consistent geometry could be developed in com-
bination with Euclid’s other axioms. This discovery was made almost
simultaneously in the twenties of the last century by the Hungarian,
Bolyai, and the Russian, Lobatschewsky; Gauss is said to have con-
ceived the idea somewhat earlier without publishing it.

But what can we make of a geometry that assumes the opposite of
the axiom of the parallels? In order to understand the possibility
of a non-Euclidean geometry, it must be remembered that the axio-
matic construction furnishes the proof of a statement in terms of logical
derivations from the axioms alone. The drawing of a figure is only a
means to assist visualization, but is never used as a factor in the proof;
we know that a proof is also possible by the help of ‘‘badly-drawn”’
figures in which so-called congruent triangles have sides obviously
different in length. It is not the immediate picture of the figure, but
a concatenation of logical relations that compels us to accept the proof.
This consideration holds equally well for non-Euclidean geometry;
although the drawing looks like a *“ badly-drawn”’ figure, we can with its
help discover whether the logical requirements have been satisfied, just as
we can do in Euclidean geometry. This is why non-Euclidean geometry
has been developed from its inception in an axiomatic construction; in
contradistinction to Euclidean geometry where the theorems were known
first and the axiomatic foundation was developed later, the axiomatic
construction was the instrument of discovery in non-Euclidean geometry.

With this consideration, which was meant only to make non-
Euclidean geometry plausible, we touch upon the problem<of the
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Chapter I. Space

visualization of geometry. Since this question will be treated at
greater length in a later section, the remark about ‘‘badly-drawn”
figures should be taken as a passing comment. What was intended
was to stress the fact that the essence of a geometrical proof is contained
in the logic of its derivations, not in the proportions of the figures.
Non-Euclidean geometry is a logically constructible system—this was
the first and most important result established by its inventors.

It is true that a strict proof was still missing. No contradictions
were encountered—yet did this mean that none would be encountered
in the future? This question constitutes the fundamental problem
concerning an axiomatically constructed logical system. It is to be
expected that non-Euclidean statements directly contradict those of
Euclidean geometry; one must not be surprised if, for instance, the
sum of the angles of a triangle is found to be smaller than two right
angles. This contradiction follows necessarily from the reformulation
of the axiom of the parallels. What is to be required is that the new
geometrical system be self-consistent. The possibility can be imagined
that a statement a, proved within the non-Euclidean axiomatic system,
is not tenable in a later development, i.e., that the statement not-a
as well as the statement a is provable in the axiomatic system. It was
incumbent upon the early adherents of non-Euclidean geometry,
therefore, to prove that such a contradiction could never happen.

The proof was furnished to a certain extent by Klein’s! Euclidean
model of non-Euclidean geometry. Klein succeeded in coordinating
the concepts of Euclidean geometry, its points, straight lines, and
planes, its concept of congruence, etc., to the corresponding concepts
of non-Euclidean geometry, so that every statement of one geometry
corresponds to a statement of the other. If in non-Euclidean geo-
metry a statement a and also a statement #nof-a could be proved, the
same would hold for the coordinated statements a’ and #not-a’ of
Euclidean geometry; a contradiction in non-Euclidean geometry
would entail a corresponding contradiction in Euclidean geometry.
The result was a proof of consistency, the first in the history of mathe-
matics: it proceeds by reducing a new system of statements to an
earlier one, the consistency of which is regarded as virtually certain.2

After these investigations by Klein the mathematical significance of

1 For a more detailed presentation see § 11.

2 Hilbert later proved the consistency of Euclidean geometry by a reduction
to arithmetic. The consistency of arithmetic, which can no longer be proved
by reduction, needs a separate proof; this most important problem, which has
found an elaborate treatment by Hilbert and his school, is still under discussion.
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non-Euclidean geometry was recognized.! Compared with the natural
geometry of Euclid, that of Bolyai and Lobatschewsky appeared
strange and artificial; but its mathematical legitimacy was beyond
question. It turned out later that another kind of non-Euclidean
geometry was possible. The axiom of the parallels in Euclidean
geometry asserts that to a given straight line through a given point
there exists exactly one parallel; apart from the device used by Bolyai
and Lobatschewsky to deny this axiom by assuming the existence of
several parallels, there was a third possibility, that of denying the
existence of any parallel. However, in order to carry through this
assumption consistently,? a certain change in a number of Euclid’s
other axioms referring to the infinity of a straight line was required.
By the help of these changes it became possible to carry through this
new type of non-Euclidean geometry.

As a result of these developments there exists not one geometry but
a plurality of geometries. With this mathematical discovery, the
epistemological problem of the axioms was given a new solution. If
mathematics is not required to use certain systems of axioms, but is in
a position to employ the axiom #not-a as well as the axiom a, then the
assertion a does not belong in mathematics, and mathematics is solely
the science of implication, i.e., of relations of the form “if . .. then’’;
consequently, for geometry as a mathematical science, there is no prob-
lem concerning the truth of the axioms. This apparently unsolvable
problem turns out to be a pseudo-problem. The axioms are not true
or false, but arbitrary statements. It was soon discovered that the
other axioms could be treated in the same way as the axiom of the
parallels. “Non-Archimedian,” ‘‘non-Pascalian,” etc., geometries
were constructed; a more detailed exposition will be found in § 14.

These considerations leave us with the problem into which discipline
the question of the truth of the assertion @ should be incorporated.

1 Klein did not start his investigations with the avowed purpose of establishing
a proof of consistency; the proof came about inadvertently, so to speak, as a
result of the construction of the model carried out with purely mathematical
intentions. L. Bieberbach has shown recently that the recognition of the
significance of non-Euclidean geometry was the result of long years of struggle.
Berl. Akademieber. 1925, phys.-math. Klasse, p. 381. See Bonola-Liebmann,
Nichteuklidische Geometrie, Leipzig 1921 and Engel-Stackel, Theorie dev Parallel-
linien von Euklid bis Gauss, Leipzig 1895, for the earlier history of the axiom of
the parallels.

2 The axiom of the parallels is independent of the other axioms of Euclid only
in so far as it asserts the existence of at most one parallel; that there exists at
least one parallel can be demonstrated in terms of the other axioms. This fact
is stated with masterful precision in Euclid’s work.
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Chapter I. Space

Nobody can deny that we regard this statement as meaningful; com-
mon sense is convinced that real space, the space in which we live and
move around, corresponds to the axioms of Euclid and that with
respect to this space a is true, while not-a is false. The discussion of
this statement leads away from mathematics; as a question about a
property of the physical world, it is a physical question, not a mathe-
matical one. This distinction, which grew out of the discovery of
non-Euclidean geometry, has a fundamental significance: it divides the
problem of space into two parts; the problem of mathematical space is
recognized as different from the problem of physical space.

It will be readily understood that the philosophical insight into the
twofold nature of space became possible only after mathematics had
made the step from Euclid’s geometry to non-Euclidean geometries.
Up to that time physics had assumed the axioms of geometry as the
self-evident basis of its description of nature. If several kinds of
geometries were regarded as mathematically equivalent, the question
arose which of these geometries was applicable to physical reality;
there is no necessity to single out Euclidean geometry for this purpose.
Mathematics shows a variety of possible forms of relations among
which physics selects the real one by means of observations and experi-
ments. Mathematics, for instance, teaches how the planets would
move if the force of attraction of the sun should decrease with the
second or third or nth power of the distance; physics decides that the
second power holds in the real world. With respect to geometry there
had been a difference; only one kind of geometry had been developed
and the problem of choice among geometries had not existed. After
the discoveries of non-Euclidean geometries the duality of physical and
possible space wasrecognized. Mathematics reveals the possible spaces;
physics decides which among them corresponds to physical space. In
contrast to all earlier conceptions, in particular to the philosophy
of Kant, it becomes now a task of physics to determine the geometry of
physical space, just as physics determines the shape of the earth or the
motions of the planets, by means of observations and experiments.

But what methods should physics employ in order to come to a
decision? The answer to this question will at the same time supply
an answer to the question why we are justified in speaking of a specific
physical space. Before this problem can be investigated more closely,
another aspect of geometry will have to be discussed. For physics
the analytic treatment of geometry became even more fruitful than the
axiomatic one.

6

§ 2. Riemannian Geometry

§ 2. RIEMANNIAN GEOMETRY

Riemann’s extension of the concept of space did not start from the
axiom of the parallels, but centered around the concept of metric.

Riemann developed further a discovery by Gauss according to which
the shape of a curved surface can be characterized by the geometry
within the surface. Let us illustrate Gauss’ idea as follows. We
usually characterize the curvature of the surface of a sphere by its
deviation from the plane; if we hold a plane against the sphere it touches
only at one point; at all other points the distances between plane and
sphere become larger and larger. This description characterizes the
curvature of the surface of the sphere * from the outside ”’; the distances

Fig. 1. Circumference and diameter of a circle on the surface
of a sphere.

between the plane and the surface of the sphere lie outside the surface
and the decision about the curvature has to make use of the third
dimension, which alone establishes the difference between curved and
straight. Is it possible to determine the curvature of the surface of
the sphere without taking outside measurements? Is it meaningful
to distinguish the curved surface from the plane within two dimensions?
Gauss showed that such a distinction is indeed possible. If we were to
pursue “‘practical geometry”’ on the sphere, by surveying, for instance,
with small measuring rods, we should find out very soon that we were
living on a curved surface. For the ratio of circumference # and dia-
meter d of a circle we would obtain a number smaller than = = 3.14...
as is shown in Fig. 1. Since we stay on the surface all the time, we
would not measure the “‘real diameter”’ which cuts through the inner
part of the sphere, but the ““ curved diameter”” which lies on the surface
of the sphere and is longer. This diameter divided into the circum-
ference results in a number smaller than =. Nevertheless, it is mean-
ingful to call the point M ‘‘the center of the circle on the surface of the
sphere”” because it has the same distance from every point of the circle;
that we find ourselves on a sphere is noticed by means of the deviation

of the ratio from =. In this way we obtain a geometry of a
7
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Chapter I. Space

spherical surface which is distinguished from the ordinary geometry
by the fact that different metrical relations hold for this kind of
geometry. In addition to the change in the ratio between circumference
and diameter of a circle, an especially important feature is that the sum
of the angles of a triangle on a sphere is greater than 180°.

It is remarkable that this generalization of plane geometry to surface
geometry is identical with that generalization of geometry which
originated from the analysis of the axiom of the parallels. The leading
role which has been ascribed to the axiom of the parallels in the course
of the development of geometrical axiomatics cannot be justified from
a purely axiomatic point of view; the construction of non-Euclidean
geometries could have been based equally well upon the elimination of
other axioms. It was perhaps due to an intuitive feeling for theoretical
fruitfulness that the criticism always centered around the axiom of the
parallels. For in this way the axiomatic basis was created for that
extension of geometry in which the metric appears as an independent
variable.l Once the significance of the metric as the characteristic
feature of the plane has been recognized from the viewpoint of Gauss’
plane theory, it is easy to point out, conversely, its connection with the
axiom of the parallels. The property of the straight line of being the
shortest connection between two points can be transferred to curved
surfaces, and leads to the concept of straighiest line; on the surface of
the sphere the great circles play the role of the shortest line of con-
nection, and on this surface their significance is analogous to that of
the straight lines on the plane. Yet while the great circles as ‘“‘ straight
lines”’ share their most important property with those of the plane,
they are distinct from the latter with respect to the axiom of the
parallels: all great circles of the sphere intersect and therefore there
are no parallels among these ‘‘straight lines”. Here we encounter the
second possibility of a denial (cf. § 1) of the axiom of the parallels
which excludes the existence of parallels. If this idea is carried
through, and all axioms are formulated on the understanding that by
“straight lines” are meant the great circles of the sphere and by
“plane” is meant the surface of the sphere, it turns out that this
system of elements satisfies a system of axioms within two dimensions
which is nearly identical in all of its statements with the axiomatic
system of Euclidean geometry; the only exception is the formulation of
the axiom of the parallels.! The geometry of the spherical surface can

1 Cf. p. 148f about the connection of the axiom of the parallels with the metric.
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be viewed as the realization of a two-dimensional non-Euclidean
geometry: the demial of the axiom of the parallels singles out that
generalization of geometry which occurs in the transition from the plane
to the curved surface.

Once this result has been recognized for two-dimensional structures,
a new kind of insight is gained into the corresponding problem of
several dimensions by means of a combination of the two different
points of departure. The axiomatic development of non-Euclidean
geometry had already been achieved for three-dimensional structures
and therefore constituted an extension of three-dimensional space
analogous to the relation of the plane to the curved surface.
Although Euclidean space contains curved surfaces, it does not embody
the degree of laogical generalization that characterizes the surfaces; it
can realize only the Euclidean axiom of the parallels, not the axioms
contradicting the latter. This fact suggests a concept of space which
contains the plane Euclidean space as a special case, but includes all
non-Euclidean spaces too. Such a concept of space in three dimensions
is analogous to the concept of surface in two dimensions; it has the
same relation to Euclidean space as a surface has to the plane.

On the basis of these ideas Riemann could give so generalized a
definition to the concept of space that it includes not only Euclidean
space but also Lobatschewsky’s space as special cases. According
to Riemann, space is merely a three-dimensional manifold; the
question is left open which axiomatic systems will hold for it. Riemann
showed that it is not necessary to develop an axiomatic system in order
to find the different types of space; it is more convenient to use an
analytic procedure analogous to the method developed by Gauss for
the theory of surfaces. The geometry of space is established in terms
of six functions, the metrical coefficients of the line element, which must
be given 2 as a function of the coordinates; the manipulation of these
functions replaces geometrical considerations, and all properties of
geometry can be expressed analytically. This procedure can be

1 It is evident, in considering the spherical surface, that two great circles will
intersect in two points; hence, the denial of the axiom that two straight lines can
intersect in only one point is involved. For if all of the axioms of Euclidean
geometry except the parallel axiom are unchanged it is possible to prove there
is at least one parallel. In the treatment of the spherical surface, however, we
have seen that this theorem does not hold. This theorem depends upon the

axiom that straight lines intersect in only one point; hence its denial removes the
inconsistency.

2 Cf. the more detailed presentation in § 39.
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likened to the method in elementary analytic geometry which estab-
lishes an equivalence between a formula with two or three variables
and a curve or a surface. The imagination is thus given conceptual
support that carries it to new discoveries. In analogy to the auxiliary
concept of the curvature of a surface, which is measured by the
reciprocal product of the main radii of curvature, Riemann introduced
the auxiliary concept of curvature of space, which is a much more
complicated mathematical structure. Euclidean space, then, has a
curvature of degree zero in analogy to the plane, which is a surface
of zero curvature. Euclidean space occupies the middle ground
between the spaces of positive and negative curvatures: it can be shown
that this classification corresponds to the three possible forms of the
axiom of the parallels. In the space of positive curvature #no parallel
to a given straight line exists; in the space of zero curvature one parallel
exists; in the space of negative curvature more than one parallel exists.
In general, the curvature of space may vary from point to point in a
manner similar to the point to point variation in the curvature of a
surface; but the spaces of constant curvature have a special significance.
The space of constant negative curvature is that of Bolyai-Lobat-
schewsky; the space of constant zero curvature is the Euclidean space;
the space of constant positive curvature is called spherical, because it is
the three-dimensional analogue to the surface of the sphere. The
analytical method of Riemann has led to the discovery of more types
of space than the synthetic method of Bolyai and Lobatschewsky,
which led only to certain spaces of constant curvature. Modern
mathematics treats all these types of space on equal terms and develops
and manipulates their properties as easily as those of Euclidean
geometry.

§ 3. THE PROBLEM OF PHYSICAL
GEOMETRY

Let us now return to the question asked at the end of §1. The
geometry of physical space had to be recognized as an empirical
problem; it is the task of physics to single out the actual space, i.e.,
physical space, among the possible types of space. It can decide this
question only by empirical means: but how should it proceed?

The method for this investigation is given by Riemann’s mathe-
matical procedure: the decision must be brought about by practical
10
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measurements tn space. In a similar way as the inhabitants of a
spherical surface can find out its spherical character by taking measure-
ments, just as we humans found out about the spherical shape of our
earth which we cannot view from the outside, it must be possible to
find out, by means of measurements, the geometry of the space in
which we live. There is a geodetic method of measuring space analogous
to the method of measuring the surface of the earth. However, it would
be rash to make this assertion without further qualification. For a
clearer understanding of the problem we must once more return to the
example of the plane.
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Fig. 2. Projection of a non-Euclidean geometry on a plane.

Let us imagine (Fig. 2) a big hemisphere made of glass which merges
gradually into a huge glass plane; it looks like a surface G consisting
of a plane with a hump. Human beings climbing around on this
surface would be able to determine its shape by geometrical measure-
ments. They would very soon know that their surface is plane in the
outer domains but that it has a hemispherical hump in the middle; they
would arrive at this knowledge by noting the differences between their
measurements and two-dimensional Euclidean geometry.

An opaque plane E is located below the surface G parallel to its plane
part. Vertical light rays strike it from above, casting shadows of all
objects on the glass surface upon the plane. Every measuring rod
which the G-people are using throws a shadow upon the plane; we would
say that these shadows suffer deformations in the middle area. The
G-people would measure the distances A’B’ and B’C’ as equal in
length, but the corresponding distances of their shadows AB and BC
would be called unequal.

Let us assume that the plane E is also inhabited by human beings
and let us add another strange assumption. On the plane a mysterious
force varies the length of all measuring rods moved about in that plane,
so that they are always equal in length to the corresponding shadows
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projected from the surface G. Not only the measuring rods, however,
but all objects, such as all the other measuring instruments and the
bodies of the people themselves, are affected in the same way; these
people, therefore, cannot directly perceive this change. What kind
of measurements would the E-people obtain? In the outer areas of
the plane nothing would be changed, since the distance P'Q’ would
be projected in equal length on PQ. But the middle area which lies
below the glass hemisphere would not furnish the usual measurements.
Obviously the same results would be obtained as those found in the
middle region by the G-people. Assume that the two worlds do not
know anything about each other, and that there is no outside observer
able to look at the surface E—what would the E-people assert about the
shape of their surface?

They would certainly say the same as the G-people, i.e., that they
live on a plane having a hump in the middle. They would not notice
the deformation of their measuring rods. But why would they not
notice this deformation?

We can easily imagine it to be caused by a physical factor, for
instance by a source of heat under the plane E, the effects of which
are concentrated in the middle area. It expands the measuring rods
so that they become too long when they approach 4. Geometrical
relations similar to those we assumed would be realized; the distances
CB and BA would be covered by the same measuring rod and heat
would be the mysterious force we imagined.

But could the E-people discover this force? Before we answer this
question we have to formulate it more precisely. If the E-people
knew that their surface is really a plane, they could, of course, notice
the force by the discrepancy between their observed geometry and
Euclidean plane geometry. The question, therefore, should read:
how can the effect of the force be discovered if the nature of the
geometry is not known? Or better still: how can the force be detected
if the nature of the geometry may not be used as an indicator?

If heat were the affecting force, direct indications of its presence
could be found which would not make use of geometry as an tndirect
method. The E-people would discover the heat by means of their
sense of temperature. But they would be able to demonstrate the
heat expansion independently of this sensation, due to the fact that
heat affects different materials in different ways. Thus the E-people
would obtain one geometry when using copper measuring rods and
another when using wooden measuring rods. In this way they would
12
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notice the existence of a force. Indeed, direct evidence for the presence
of heat is based on the fact that it affects different materials in different
ways. The fact that the difference in temperature at the points A4
and C is demonstrable by the help of a thermometer is based on this
phenomenon; if the mercury did not expand more than the glass tube
and the scale of the thermometer, the instrument would show the same
reading at all temperatures. Even the physiological effect of heat
upon the human body depends upon differences in the reactions of
different nerve endings to heat stimuli.

Heat as a force can thus be demonstrated directly. The forces,
however, which we introduced in our example, cannot be demonstrated
directly. They have two properties:

(a) They affect all materials in the same way.
(b) There are no insulating walls.

We have discussed the first property, but the second one is also neces-
sary if the deformation is to be taken as a purely metrical one; it will
be presented at greater length in § 5. For the sake of completeness the
definition of the insulating wall may be added here: it is a covering
made of any kind of material which does not act upon the enclosed
object with forces having property a. Let us call the forces which
have the properties a and b universal forces; all other forces are called
differential forces. Then it can be said that only differential forces,
but not universal forces, are directly demonstrable.

After these considerations, what can be stated about the shape of
the surfaces E and G? G has been described as a surface with a hump
and E as a plane which appears to have a hump. By what right do
we make this assertion? The measuring results are the same on both
surfaces. If we restrict ourselves to these results, we may just as well
say that G is the surface with the ““illusion” of the hump and E the
surface with the “real” hump. Or perhaps both surfaces have a hump.
In our example we assumed from the beginning that E was a plane
and G a surface with a hump. By what right do we distinguish between
E and G? Does E differ in any respect from G?

These considerations raise a strange question. We began by asking
for the actual geometry of a real surface. We end with the question:
Is it meaningful to assert geometrical differences with respect to real
surfaces? This peculiar indeterminacy of the problem of physical
geometry is an indication that something was omitted in the formulation
of the problem. We forgot that a unique answer can only be found if
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the question has been stated exhaustively. Evidently some assump-
tion is missing. Since the determination of geometry depends on the
question whether or not two distances are really equal in length (the
distances A B and BC in Fig. 2), we have to know beforehand what it
means to say that two distances are “really equal.” Is really equal
a meaningful concept? We have seen that it is impossible to settle
this question if we admit universal forces. Is it, then, permissible to
ask the question?

Let us therefore inquire into the epistemological assumptions of
measurement. For this purpose an indispensable concept, which has
so far been overlooked by philosophy, must be introduced. The con-
cept of a coordinative definition is essential for the solution of our
problem.

§ 4. COORDINATIVE DEFINITIONS

Defining usually means reducing a concept to other concepts. In
physics, as in all other fields of inquiry, wide use is made of this pro-
cedure. There is a second kind of definition, however, which is also
employed and which derives from the fact that physics, in contra-
distinction to mathematics, deals with real objects. Physical know-
ledge is characterized by the fact that concepts are not only defined
by other concepts, but are also coordinated to real objects. This
coordination cannot be replaced by an explanation of meanings, it
simply states that this concept is coordinated to this particular thing.
In general this coordination is not arbitrary. Since the concepts are
interconnected by testable relations, the coordination may be verified
as true or false, if the requirement of uniqueness is added, i.e., the rule
that the same concept must always denote the same object. The
method of physics consists in establishing the uniqueness of this
coordination, as Schlick! has clearly shown. But certain preliminary
coordinations must be determined before the method of coordination
can be carried through any further; these first coordinations are there-
fore definitions which we shall call coordinative definitions. They are
arbitrary, like all definitions; on their choice depends the conceptual
system which develops with the progress of science.

Wherever metrical relations are to be established, the use of
coordinative definitions is conspicuous. If a distance is to be measured,

1 M. Schlick, Aligemeine Evkenntnislehve, Springer, Berlin 1918, Ziff. 10.
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the unit of length has to be determined beforehand by definition.
This definition is a coordinative definition. Here the duality of
conceptual definition and coordinative definition can easily be seen.
We can define only by means of other concepts what we mean by a
unit; for instance: “A unit is a distance which, when transported
along another distance, supplies the measure of this distance.” But this
statement does not say anything about the size of the unit, which can
only be established by reference to a physically given length such as
the standard meter in Paris. The same consideration holds for other
definitions of units. If the definition reads, for instance: ‘‘ A meter is
the forty-millionth part of the circumference of the earth,” this
circumference is the physical length to which the definition refers by
means of the insertion of some further concepts. And if the wave-
length of cadmium light is chosen as a unit, cadmium light is the
physical phenomenon to which the definition is related. It will be
noticed in this example that the method of coordinating a unit to a
physical object may be very complicated. So far nobody has seen a
wave-length; only certain phenomena have been observed which are
theoretically related to it, such as the light and dark bands resulting
from interference. In principle, a unit of length can be defined in
terms of an observation that does not include any metrical relations,
such as ‘““that wave-length which occurs when light has a certain red-
ness.” In this case a sample of this red color would have to be kept
in Paris in place of the standard meter. The characteristic feature of
this method is the coordination of a concept to a physical object.
These considerations explain the term ‘‘coordinative definition.” If
the definition is used for measurements, as in the case of the unit of
length, it is a metrical coordinative definition.

The philosophical significance of the theory of relativity consists
in the fact that it has demonstrated the necessity for metrical coordina-
tive definitions in several places where empirical relations had pre-
viously been assumed. It is not always as obvious as in the case of the
unit of length that a coordinative definition is required before any
measurements can be made, and pseudo-problems arise if we look for
truth where definitions are needed. The word ‘‘relativity " is intended
to express the fact that the results of the measurements depend upon
the choice of the coordinative definitions. It will be shown presently
how this idea affects the solution of the problem of geometry.

After this solution of the problem of the unit of length, the next step

leads to the comparison of two units of lengths at different locations.
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If the measuring rod is laid down, its length is compared only to that
part of a body, say a wall, which it covers at the moment. If two
separate parts of the wall are to be compared, the measuring rod will
have to be transported. It is assumed that the measuring rod does
not change during the transport. It is fundamentally impossible,
however, to detect such a change if it is produced by universal forces.
Assume two measuring rods which are equal in length. They are
transported by different paths to a distant place; there again they are
aid down side by side and found equal in length. Does this procedure
prove that they did not change on the way? Such an assumption
would be incorrect. The only observable fact is that the two measur-
ing rods are always equal in length at the place where they are compared
to each other. But it is impossible to know whether on the way the
two rods expand or contract. An expansion that affects all bodies in
the same way is not observable because a direct comparison of measur-
ing rods at different places is impossible.

An optical comparison, for instance by measuring the angular
perspective of each rod with a theodolite, cannot help either. The
experiment makes use of light rays and the interpretation of the
measurement of the lengths depends on assumptions about the
propagation of light.

The problem does not concern a matter of cognition but of definition.
There is no way of knowing whether a measuring rod retains its length
when it is transported to another place; a statement of this kind can
only be introduced by a definition. For this purpose a coordinative
definition is to be used, because two physical objects distant from each
other are defined as equal in length. It is not the concept equality
of length which is to be defined, but a real object corresponding to it is
to be pointed out. A physical structure is coordinated to the concept
equality of length, just as the standard meter is coordinated to the
concept unit of length.

This analysis reveals how definitions and empirical statements are
interconnected. As explained above, it is an observational fact,
formulated in an empirical statement, that two measuring rods which
are shown to be equal in length by local comparison made at a certain
space point will be found equal in length by local comparison at every
other space point, whether they have been transported along the same
or different paths. When we add to this empirical fact the definition
that the rods shall be called equal in length when they are at different
places, we do not make an inference from the observed fact; the addition
16
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constitutes an independent convention. There is, however, a certain
relation between the two. The physical fact makes the convention
unique, i.e., independent of the path of transportation. The statement
about the uniqueness of the convention is therefore empirically verifi-
able and not a matter of choice. One can say that the factual relations
holding for a local comparison of rods, though they do not require the
definition of congruence in terms of transported rods, make this
definition admissible. Definitions that are not unique are inadmissible
in a scientific system.

This consideration can only mean that the factual relations may be
used for the simple definition of congruence where any rigid measuring
rod establishes the congruence. If the factual relations did not hold,
a special definition of the unit of length would have to be given for
every space point. Not only at Paris, but also at every other place a
rod having the length of a “‘meter” would have to be displayed, and
all these arbitrarily chosen rods would be called equal in length by
definition. The requirement of uniformity would be satisfied by
carrying around a measuring rod selected at random for the purpose of
making copies and displaying these as the unit. If two of these copies
were transported and compared locally, they would be different in
length, but this fact would not ““falsify ”’ the definition. Insucha world
it would become very obvious that the concept of congruence is a
definition; but we, in our simple world, are also permitted to choose a
definition of congruence that does not correspond to the actual
behavior of rigid rods. Thus we could arrange measuring rods, which
in the ordinary sense are called equal in length, and, laying them end to
end, call the second rod half as long as the first, the third one a third,
etc. Such a definition would complicate all measurements, but
epistemologically it is equivalent to the ordinary definition, which
calls the rods equal in length. In this statement we make use of the
fact that the definition of a unit at only one space point does not render
general measurements possible. For the general case the definition of
the unit has to be given in advance as a function of the place (and also
of the time).l It is again a malter of fact that our world admits of a
simple definition of congruence because of the factual relations holding for
the behavior of rigid rods; but this fact does not deprive the simple definition
of ts definitional character.

The great significance of the realization that congruence is a matter
of definition lies in the fact that by its help the epistemological problem

1 Cf. §39 and § 46.
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of geometry is solved. The determination of the geometry of a certain
structure depends on the definition of congruence. In the example of
the surface E the question arose whether or not the distances AB and
BC are equal; in the first case the surface E will have the same geo-
metrical form as the surface G, in the second case it will be a plane.
The answer to this question can now be given in terms of the foregoing
analysis: whether AB = BC is not a matter of cognition but of
definition. If in E the congruence of widely separated distances
is defined in such a way that AB = BC, E will be a surface with
a hump in the middle; if the definition reads differently, E will be a
plane.  The geometrical form of a body is no absolute datum of experience,
but depends on a preceding coordinative definition; depending on the
definition, the same structure may be called a plane, or a sphere, or a
curved surface. Just as the measure of the height of a tower does not
constitute an absolute number, but depends on the choice of the unit
of length, or as the height of a mountain is only defined when the zero
level above which the measurements are to be taken is indicated,
geometrical shape is determined only after a preceding definition.
This requirement holds for the three-dimensional domain in the same
way as it does for the two-dimensional.

18

§ 5. Rigid Bodies

We are now left with the problem: which coordinative definition
should be used for physical space? Since we need a geometry, a
decision has to be made for a definition of congruence. Although we
must do so, we should never forget that we deal with an arbitrary
decision that is neither true nor false. Thus the geometry of physical
space is not an immediate result of experience, but depends on the
choice of the coordinative definition.

In this connection we shall look for the most adequate definition,
i.e., one which has the advantage of logical simplicity and requires the
least possible change in the results of science. The sciences have
implicitly employed such a coordinative definition all the time, though
not always consciously; the results based upon this definition will be
developed further in our analysis. It can be assumed that the definition
hitherto employed possesses certain practical advantages justifying its
use. In the discussion about the definition of congruence by means of
rigid rods, this coordinative definition has already been indicated.
The investigation is not complete, however, because an exact definition
of the rigid body is still missing.

§ 5. RIGID BODIES

Experience tells us that physical objects assume different states.
Solid bodies have an advantage over liquid ones because they change
their shape and size only very little when affected by outside forces.
They seem, therefore, to be useful for the definition of congruence.
However, if the result of the previous considerations is kept in mind,
this relative stability is no ground on which to base a preference for
solid bodies. As was explained, the form and size of an object depends
on the coordinative definition of congruence; if the solid body is used
for the coordinative definition, the statement that it does not change its
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shape must not be regarded as a cognitive statement. It can only be
a definition: we define the shape of the solid body as unchangeable.
But how can the solid body be defined? In other words, if the physical
state of being solid were defined differently, under what conditions
would the solid body be called rzgzd? If the conservation of shape is
not permissible as a criterion, what criteria may be used?

The problem becomes more complicated because we cannot solve it
by merely pointing to certain real objects. Although the standard
meter in Paris was cited previously as the prototype of such a definition,
this account was a somewhat schematic abstraction. Actually no
object is the perfect realization of the rigid body of physics; it must
be remembered that such an object may be influenced by many
physical forces. Only after several corrections have been made, for
example, for the influence of temperature and elasticity, is the resulting
length of the object regarded as adequate for the coordinative definition
of the comparison of lengths. The standard meter in Paris would not
be accepted as the definition of the unit of length, if it were not pro-
tected from influences of temperature, etc., by being kept in a vault.
If an earthquake should ever throw it out of this vault and deform its
diameter, nobody would want to retain it as the prototype of the
meter; everybody would agree that the standard meter would no longer
be a meter. But what kind of definition is this, if the definition may
some day be called false? Does the concept of coordinative definition
become meaningless?

The answer is: it does not become meaningless, but, as we shall see,
its application is logically very complicated. The restrictions that
affect the arbitrariness of the coordinative definition have two sources.
One restriction lies in the demand that the obtained metric retain
certain older physical results, especially those of the ““physics of daily
life.”” Nobody could object on logical grounds if the bent rod would
be taken as the definition of the unit of length; but then we must
accept the consequence that our house, our body, the whole world has
become larger. Relative to the coordinative definition it has, indeed,
become larger, but such an interpretation does not correspond to our
habitual thinking. We prefer an interpretation of changes involving an
individual thing on the one side and the rest of the world on the other
side that confines the change to the small object. The theory of motion
uses the same idea; the fly crawling around in the moving train is
called “moving " relative to the train, and the train is called “moving”’
relative to the earth. Provided that we realize that such a description
20
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cannot be justified on logical grounds, we can employ it without hesita-
tion because it is more convenient; yet it must not be regarded as
“more true’’ than any other description. We must not assume that
a deformation of the standard meter by an earthquake is equivalent
to a change in any absolute sense; actually it is only a change in the
difference in size between the rod and the rest of the world. There is,
of course, no objection to the use of such restrictions on coordinative
definitions, because their only effect is an adaptation of the scientific
definition to those of everyday life.

These restrictions are more numerous than might be anticipated
offhand. Geometrical concepts abound in our daily life. We call
the floor and ceiling plane, the corners of our rooms rectangular, a taut
string straight. It is clear that these terms can only be definitions
and have nothing to do with. cognition, as one might at first believe.
But by means of these definitions we have arrived at a very simple
physics of everyday life. It would logically be permissible to define
the taut string as curved, but then we would have to introduce a
complicated field of force which pulls the string to the side and prevents
it from adjusting itself to the shortest line in spite of the elastic tension,
comparable to a stretched chain bending under the influence of gravity;
such a convention would complicate physics unnecessarily. However,
this is the only objection that can be raised against this description;
the statement that a taut string is straight is not empirical but only a
more convenient definition.

On the other hand, these restrictions do not constitute strict rules;
they merely confine coordinative definitions to certain limits. Direct
observation is inexact and we admit the possibility of small inaccuracies
of observation. Scientifically speaking nobody will deny that the
floor is a little curved, or that a tightened string sags slightly. Such
a statement would mean that science does not really use the floor and
the string but other physical objects as standards for its coordinative
definition, and that, compared to these other things, small deviations
occur. The physics of everyday life furnishes only limits for
coordinative definitions; it does not intend to establish them strictly.

For everyday physics this strictness is not possible, and the task of
scientific physics is therefore to give a strict formulation of the coordina-
tive definition within these limits. This aim of precision is the reason
for the important role played by correction factors and supplementary
forces in the measurement of lengths. The principle according to
which the strict definition is achieved must now be investigated more
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closely. What is the rigid body of physics? It must be defined
strictly without the use of the concept of change in size.

For this purpose the concepts 7ig7d and solid must be distinguished.
Solid bodies are bodies having a certain physical state which can be
defined ostensively; it differs from the liquid and gaseous state in a
number of observable ways. The solid body can be defined without the
use of the concept of change in size. Rigid bodies, however, are those
bodies that constitute the physical part in the coordinative definition of
congruence and that by definition do not change their size when
transported. By the use of the concept solid body a definition of the
concept rigid body can be given that does not employ congruence.

Definition: Rigid bodies are solid bodies which are not affected by
differential forces, or concerning which the influence of differential forces
has been eliminated by corrections; universal forces are disregarded.

This definition will be discussed presently. Let us first deal with the
last clause. May we simply neglect universal forces? But we do not
neglect them: we merely set the universal forces equal to zero by
definition. Without such a rule the rigid body cannot be defined.
Since there is no demonstrable difference produced by universal
forces, the conception that the transported measuring rod is deformed
by such forces can always be defended. No object is rigid relative to
universal forces.

This idea corresponds to the usual method of physics. All forces
occurring in physics are differential forces in the sense of our definition.
The terms “‘ physical forces” and *‘differential forces’’ will therefore be
used interchangeably in the following sections.

We must still discuss the first part of the definition of the rigid
body. Again we shall use the method of the physicist. However, we
shall avoid the vicious circle of defining the absence of exterior forces
by an absence of change of shape. Since universal forces were
eliminated by definition and exterior forces are always demonstrable
by differential effects, the conservation of shape is defined inversely
through the lack of exterior forces.

This rule needs an addition. Itisnot possible,even by computations,
to eliminate exterior forces completely; small effects evade experi-
mental observation and the definition supplies an ideal limit that can
only be approximated. The method of approximation must therefore
be discussed. Solid bodies possess considerable interior forces or
tensions. According to the usual conception, these forces account for
resistance against change of shape; but conversely, in our episte-
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mological construction we can base the definition of negligible change
of shape upon the occurrence of these interior forces and tensions.
Change of shape is called small if the exterior forces are small relative
to the interior forces. The more nearly this condition is realized, the
more rigid is the body; but only at the unattainable limit where the
exterior forces disappear relative to the interior forces would the rigid
body be realized in the strict sense.

The definition of the rigid body depends on the definition of a closed
system. Here lies the difficulty of the problem. Two critical points
have been evaded by our definition. In the first place, a closed
system can never be strictly realized; therefore, a transition to a limit
must be given that permits us to call a system ‘““closed to a certain
degree of exactness.”” This transition to a limit is obtained through
the relation between interior and exterior forces, which can be made
very small by means of technical manipulation. Without the con-
sideration of interior forces, however, the concept of a closed system
could not be determined, because there is always a certain connection
with the environment, and it is necessary to name the other magnitudes
relative to which the exterior forces are small. It is, therefore, a
necessary condition for a closed system to contain interior forces, and
even in the transition to infinitesimal closed systems, exterior forces
must vanish in a higher order than the interior ones. The second
difficulty in the definition of closed systems lies in the possible existence
of forces not demonstrable by differential measurements because they
affect all indicators in the same way. Physical forces in the sense of
our definition can be excluded by adequate protection; but if there
exist forces which penetrate all insulating walls (property b, p. 13)
there are no closed systems. As universal forces they were set equal
to zero by definition and as such eliminated. Without such a rule a
closed system cannot be defined.

This definition of the rigid body is not explicitly given in the
literature of physics, but it is that definition on which the whole system
of physics is based. With a different definition physical laws would
generally change; this follows from the fact that in the dimensions of
the fundamental physical magnitudes, such as force and energy, the
concept of length occurs; thus the values of these magnitudes depend
on the definition of congruence. It must not be argued, however,
that conversely the ““truth” of our definition of congruence can be
inferred from the truth of physical laws. The truth of the physical

laws can only be asserted under the assumption of a definition of
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congruence; the laws are true relative to the definition of congruence by
means of rigid bodies. The following example will illustrate this point:
if a rubber band were used as the definition of congruence without any
indication of its state of tension, the energy of closed systems would in
general not be constant, since the measure of the energy would vary
as a function of the rubber band. The kinetic energy would change,
for instance, because the velocity of the body under consideration would
vary with the changes in the rubber band. The law of conservation
of energy would be replaced by a law stating the dependence of the
energy of closed systems on the state of the rubber band. But this
law would be just as true as the law of the conservation of energy.
The disadvantage would consist only in the fact that the biography of
the rubber band would have to be included in all physical laws. It is
one of the most important facts of natural science that it is possible
to establish physical laws free from such complications; the significance
of the rigid body is based on it.

§ 6. THE DISTINCTION BETWEEN UNIVERSAL
AND DIFFERENTIAL FORCES

Our definition of the rigid body is based mainly upon the distinction
between universal and differential forces. When we used heat as a
differential force in our example above, we could show that a direct
proof of physical forces is possible because of the difference of their
effects on different materials. This idea must be elaborated further.
The thermometer works because mercury and glass do not have the
same coefficient of expansion. But can differences in temperature be
demonstrated only by differences between the reactions of various
materials to heat?

When we recall how the coefficient of expansion of a rod is measured

B C

Direction of
expansion

E S _ D Heated

rod
Fig. 3. Sketch of an apparatus for the measurement of heat
expansion.

in practice, another possibility suggests itself. For this measurement
a device is used as shown in Fig. 3. The distance ED corresponds to
the rod to be measured. The end D is pressed firmly against the
24
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support; the end E can move freely. Before the rod is heated, its
length is equal to the distance AD. The heat is applied only to ED,
while BC is kept at its initial temperature; thus the interval 4D
remains constant, while ED changes its length. E will move to the
left beyond 4. The influence of the heat is observable because 4 and
E no longer coincide. This effect is observable, even if the whole
apparatus consists of the same material. Imagine a copper wire bent
in the rectangular shape of Fig. 3; the two ends of the wire meet in
A and E. Such a device would be a ‘““thermometer”’, because it would
be possible to observe a change in temperature by the disappearance
of the coincidence between A and E. Here the force is measured by
an indicator made of only one material.

Such a device can serve quite generally to demonstrate the presence
of forces; the indicator of the force will always react when the field
of force is not homogeneous, i.e., if it affects the different parts of the
wire in different ways. The field of force may fill the space con-
tinuously; if a measurement is to be taken in the field of heat, a
complete insulation of the rod DE from the support, i.e., a discontinuity
of the field of temperature, is not necessary for the qualitative
demonstration of the expansion.

The indicator can have yet another form that makes its operation
even more obvious. Imagine a circle made of wire with a diameter

Direction of
expansion

Source of
heat

Fig. 4. Sketch of an indicator for the geometrical curvature.

of the same material (Fig. 4). At P this diameter is fastened to the
circle, at Q the point S touches the ring, so that there is a coincidence
between Q and S. Such an apparatus will also demonstrate the

existence of higher temperature in the middle of the circle, for then Q
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will not coincide with S. The device can be used for other purposes,
too. If it were moved along an egg-shaped surface so that the wire
were everywhere in contact with the surface, ¢ would no longer
coincide with S. The indicator points out directly the curvature of
the surface by comparing circumference and diameter of a circle.
Applied to surfaces of variable curvature, such as an egg-shaped
surface, the indicator will register the curvature.

Here we have an indicator of geometrical relations, and we notice
that evidence of a field of heat is furnished by a geometrical method.
From the change of the geometry we infer the presence of the field of
heat. We did not exclude the possibility of this inference; we must,
however, analyze the question why, in this case, we go beyond the
observation of the geometry, and infer a deforming force. Again we
answer that the different reactions of the different kinds of material
lead to this inference. In a field of heat the points Q and S on a copper
indicator would be shifted in a different way than on an indicator made
of iron wire; on an egg-shaped surface both would show the same
differences. Thus the only distinguishing characteristic of a field of
heat is the fact that it causes different effects on different materials.
But we could very well imagine that the coefficients of heat expansion
of all materials might be equal—then no difference would exist between
a field of heat and the geometry of space. It would be permissible to
say that in the neighborhood of a warm body the geometry is changed
just as (according to Einstein) space is curved in the neighborhood of
a large mass. Nothing could prevent us from carrying through this
conception consistently. We do not adopt this procedure because we
would then obtain a special geometry for copper, another one for iron,
etc.; we avoid these complications by means of the definition of the
rigid body.
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A remark may be added concerning the treatment these questions
receive in the literature. The forces which we called universal are
often characterized as forces preserving cotncidences; all objects are
assumed to be deformed in such a way that the spatial relations of
adjacent bodies remain unchanged. In this context belongs the
assumption that overnight all things enlarge to the same extent, or
that the size of transported objects is uniformly affected by their
position. Helmholtz’ parable of the spherical mirror comparing the
world outside and inside the mirror is also of this kind; ! if our world
were to be so distorted as to correspond to the geometrical relations
of the mirror images, we would not notice it, because all coincidences
would be preserved. It has been correctly said that such forces are not
demonstrable, and it has been correctly inferred that they have to be
set equal to zero by definition if the question concerning the structure
of space is to be meaningful. It follows from the foregoing con-
siderations that this is a mecessary but not a sufficient condition.
Forces destroying coincidences must also be set equal to zero, if they
satisfy the properties of the universal forces mentioned on p. 13; only
then is the problem of geometry uniquely determined. Our concept
of universal force is thus more general and contains the concept of the
coincidence-preserving force as a special case. It should not be said,
therefore, that universal forces are not demonstrable; this holds only
for forces which preserve coincidences. Fig. 4, however, is an example
of an indicator showing universal forces which destroy coincidences
(in this case the coincidence QS).

We can define such forces as equal to zero because a force is no
absolute datum. When does a force exist? By force we understand
something which is responsible for a geometrical change. 1f a measuring
rod is shorter at one point than at another, we interpret this con-
traction as the effect of a force. The existence of a force is therefore
dependent on the coordinative definition of geometry. If we say:
actually a geometry G applies, but we measure a geometry G’, we
define at the same time a force F which causes the difference between
Gand G'. The geometry G constitutes the zero point for the magnitude
of a force. If we find that there result several geometries G’ according
1 H. v. Helmholtz, Schriften zur Evkenntnistheorie, ed. by Hertz and Schlick,

Springer, Berlin 1921, p. 19.
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as the material of the measuring instrument varies, F is a differential
force; in this case we gauge the effect of F upon the different materials
in such a way that all G’ can be reduced to a common G. If we find,
however, that there is only one G’ for all materials, F is a universal force.
In this case we can renounce the distinction between G and G', i.e., we
can identify the zero point with G’, thus setting F equal to zero. This
is the result that our definition of the rigid body achieves.

§ 7. TECHNICAL IMPOSSIBILITY AND
LOGICAL IMPOSSIBILITY

In the following section a criticism will be discussed which has been
made against our theory of coordinative definitions. It has been
objected that we base the arbitrariness in the choice of the definition
on the impossibility of making measurements. Although it is admitted
that certain differences cannot be verified by measurement, we should
not infer from this fact that they do not exsst. If we had no means of
discovering the shape of surface E in Fig. 2 (p. 11) it would still be
meaningful to ask what shape the surface has; although the possibility
of making measurements is dependent on our human abilities, the
objective fact is independent of them. Thus we are accused of having
confused subjective inability with objective indeterminacy.

There are, indeed, many cases where physics is unable to make
measurements. Does this mean that the magnitude to be measured
does not exist? It is impossible, for instance, to determine exactly
the number of molecules in a cubic centimeter of air; we can say with
a high degree of certainty that we shall never succeed in counting every
individual molecule. But can we infer that this number does not
exist? On the contrary, we must say that there will always be an
integer which denotes this quantity exactly. The mistake of the
theory of relativity is supposed to consist in the fact that it confuses
the impossibility of making measurements with objective indeterminacy.

Whoever makes this objection overlooks an important distinction.
There is an impossibility of making measurements which is due to the
limitation of our technical means; I shall call it fechnical impossibility.
In addition, there is a logical impossibility of measuring. Even if we

impossibility of had a perfect experimental technique, we should not be able to avoid

measuring the
measuring rod

this logical impossibility. It is logically impossible to determine
whether the standard meter in Paris is really a meter. The highest
refinement of our geodetic instruments does not teach us anything
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about this problem, because the meter cannot be defined in absolute
terms. This is the reason why the measuring rod in Paris is called the
definition of a meter. It is arbitrarily defined as the unit, and the
question whether it really represents this unit has lost its meaning.
The same considerations hold for a comparison of units at distant
places. Here we are not dealing with technical limitations, but with a
logical impossibility. The impossibility of a determination of the shape
of a surface, if universal forces are admitted, is not due to a deficiency
of our instruments, but is the consequence of an unprecise question.
The question concerning the shape of the surface has no precise
formulation, unless it is preceded by a coordinative definition of
congruence. What is to be understood by ‘‘the shape of a real sur-
face”? Whatever experiments and measurements I make, they will
never furnish a unique indication of the shape of the surface. If
universal forces are admitted, the measurements may be interpreted in
such a way that many different shapes of surfaces are compatible with
the same observations. There is one definition which closes the logical
gap and tells us which interpretations of our observations must be
eliminated: this task is performed by the coordinative definition. It
gives a precise meaning to the question of the shape of the real surface
and makes a unique answer possible, just as a question about length
has a unique meaning only when the unit of measurement is given.
It is not a technical failure that prevents us from determining the
shape of a surface without a coordinative definition of congruence, but
a logical impossibility that has nothing to do with the limitations of
human abilities.

The situation will be further clarified if we compare the last example
with the case of the indeterminacy of the number of molecules in a
given cubic centimeter of air. This number is precisely defined and
it is only due to human imperfection that we cannot determine it
exactly. But in this case an approximation is possible which will
increase with increasing perfection of our technical instruments.
When we are faced with a logical impossibility there are no approxi-
mations. We cannot decide approximately whether the surface E
of Fig. 2 (p. 11) is a plane, or a surface with a hemispherical hump in
the middle; there is no defined limit which the measurement could
approach. Furthermore, once the coordinative definition is given,
the technical impossibility of an exact measurement remains. Even
our definition of the rigid body does not permit a strict determination

of the structure of space; all our measurements will still contain some
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degree of inexactness which a progressive technique will gradually
reduce but never overcome.

§ 8. THE RELATIVITY OF GEOMETRY

With regard to the problem of geometry we have come to realize
that the question which geometry holds for physical space must be
decided by measurements, i.e., empirically. Furthermore, this decision
is dependent on the assumption of an arbitrary coordinative definition
of the comparison of length. Against this conception arguments have
been set forth which endeavor to retain Euclidean geometry for
physical space under any circumstances and thus give it a preference
among all other geometries. On the basis of our results we can discuss
these arguments; our analysis will lead to the relativity of geometry.

One of the arguments maintains it is a mistake to believe that the
choice of the coordinative definition is a matter left to our discretion.
The measurements of geometry as carried through in practice pre-
suppose quite complicated measuring instruments such as the theo-
dolite; therefore these measurements cannot be evaluated without a
theory of the measuring instruments. The theory of the measuring
instruments, however, presupposes the validity of Euclidean geometry
and it constitutes a contradiction to infer a non-Euclidean geometry
from the results.

This objection can be met in the following way. Our conception
permits us to start with the assumption that Euclidean geometry holds
for physical space. Under certain conditions, however, we obtain the
result that there exists a universal force F that deforms all measuring
instruments in the same way. However, we can invert the inter-
pretation: we can set F equal to zero by definition and correct in turn
the theory of our measuring instruments. We are able to proceed in
this manner because a transformation of all measurements from one
geometry into another is possible and involves no difficulties. It is
correct to say that all measurements must be preceded by a definition;
we expressed this fact by the indispensability of the coordinative
definition. The mistake of the objection consists in the belief that this
definition cannot be changed afterwards. Just as we can measure the
temperature with a Fahrenheit thermometer and then convert the
results into Celsius, measurements can be started under the assumption
of Euclidean geometry and later converted into non-Euclidean
measurements. There is no logical objection to this procedure.

In practice the method is much simpler. It turns out that the
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non-Euclidean geometry obtained under our coordinative definition
of the rigid body deviates quantitatively only very little from Euclidean
geometry when small areas are concerned. In this connection ‘small
area’’ means ‘‘on the order of the size of the earth’’; deviations from
Euclidean geometry can be noticed only in astronomic dimensions.
In practice, therefore, it is not necessary to correct the theory of the
measuring instruments afterwards, because these corrections lie within
the errors of observation. The following method of inference is
permissible: we can prove by the assumption that Euclidean geometry
holds for small areas that in astronomic dimensions a non-Euclidean
geometry holds which merges infinitesimally into Euclidean geometry.
No logical objection can be advanced against this method, which is
characteristic of the train of thought in modern physics. It is carried
through in practice for astronomic measurements designed to confirm
Einstein’s theory of gravitation.

The ideas expressed in the preceding considerations attempted to
establish Euclidean geometry as epistemologically a priori; we found
that this a priori cannot be maintained and that Euclidean geometry

1 H. Reichenbach, Relativititstheorie und Evkenntnis a priovi, Springer, Berlin,

1920.
31

.but in
practice this
is not
required



Is the visual
space
Euclidean?

Euclidean
axioms are
visually self~
evident

What are the
implications
for physical

geometry?

Chapter I. Space

is not an indispensable presupposition of knowledge. We turn now to
the idea of the visual a priori; this Kantian doctrine bases the pre-
ference for Euclidean geometry upon the existence of a certain manner
in which we visualize space.

The theory contends that an innate property of the human mind,
the ability of visualization, demands that we adhere to Euclidean
geometry. In the same way as a certain self-evidence compels us to
believe the laws of arithmetic, a visual self-evidence compels us to
believe in the validity of Euclidean geometry. It can be shown that
this self-evidence is not based on logical grounds. Since mathematics
furnishes a proof that the construction of non-Euclidean geometries
does not lead to contradictions, no logical self-evidence can be claimed
for Euclidean geometry. This is the reason why the self-evidence of
Euclidean geometry has sometimes been derived, in Kantian fashion,
from the human ability of visualization conceived as a source of
knowledge.

Everybody has a more or less clear notion of what is understood by
visualization. If we draw two points on a piece of paper, connect them
by a straight line and add a curved connecting line, we ““see’’ that the
straight line is shorter than the curved line. We even claim to be cer-
tain that the straight line is shorter than any other line connecting the
two points. We say this without being able to prove it by measure-
ments, because it is impossible for us to draw and measure all the lines.
The power of imagination compelling us to make this assertion is called
the ability of wvisualization. Similarly, the Euclidean axiom of the
parallels seems to be visually necessary. It remains for us to investi-
gate this human quality and its significance for the problem of space.

The analysis will be carried through in two steps. Let us first
assume it is correct to say that a special ability of visualization exists,
and that Euclidean geometry is distinguished from all other geometries
by the fact that it can easily be visualized. The question arises:
what consequences does this assumption have for physical space?
Only after this question has been answered can the assumption itself
be tested. The second step of our analysis will therefore consist in
the inquiry whether a special ability of visualization exists (§ 9-§ 11).

Let us turn to the first question, which has to be reformulated in
order to relate it clearly to the epistemological problem.

Mathematics proves that every geometry of the Riemannian kind
can be mapped upon another one of the same kind. In the language
of physics this means the following:
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Theorem 6: *“ Given a geometry G’ to which the measuring instruments
conform, we can imagine a universal force F which affects the instru-
ments in such a way that the actual geometry is an arbitrary geometry
G, while the observed deviation from G is due to a universal deformation
of the measuring instruments,’’!

No epistemological objection can be made against the correctness of
theorem 8. Is the visual a priors compatible with it?

Offhand we must say yes. Since the Euclidean geometry Gy belongs
to the geometries of the Riemannian kind, it follows from theorem 6
that it is always possible to carry through the visually preferred
geometry for physical space. Thus we have proved that we can always
satisfy the requirement of visualization.

But something more is proved by theorem 8 which does not fit very
well into the theory of the visual a priori. The theorem asserts that
Euclidean geometry is not preferable on epistemological grounds.
Theorem 6 shows all geometries to be equivalent; it formulates the
principle of the relativity of geometry. It follows that it is meaningless
to speak about one geometry as the frue geometry. We obtain a
statement about physical reality only if in addition to the geometry G
of the space its universal field of force F is specified. Only the
combination

G+F
is a testable statement.

We can now understand the significance of a decision for Euclidean
geometry on the basis of a visual a priori. The decision means only
the choice of a specific coordinative definition. In our definition of
the rigid body we set F = 0; the statement about the resulting G
is then a univocal description of reality. This definition means that in
“G+F"” the second factor is zero. The visual a priori, however, sets
G = Go. But then the empirical component in the results of measure-
ments is represented by the determination of F; only through the
combination

Go+F
are the properties of space exhaustively described.
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Although it may be admitted that Euclidean geometry is unique
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not disprove the theory of the relativity of geometry and of the
necessity for coordinative definitions of the comparison of length.
On the contrary, it is only this theory that can state precisely the
epistemological function of visualization: the possibility of visualization
is a ground for subjective preference of one particular coordinative
definition. But the occurrence of visualization does not imply
anything about the space of real objects.

In this connection another argument in support of the preference for
Euclidean geometry is frequently adduced. To be sure, this argument
is not related to the problem of visualization, but like the visual
a priort it attributes a specific epistemological position to Euclidean
geometry; therefore we shall consider it here. It is maintained that
Euclidean geometry is the simplest geometry, and hence physics must
choose the coordinative definition G = Gy rather than the coordinative
definition F = 0. This point of view can be answered as follows:
physics is not concerned with the question which geometry is
simpler, but with the question which coordinative definition is simpler.
It seems that the coordinative definition F = 0 is simpler, because
then the expression G+ F reduces to G. But even this result is not
essential, since in this case simplicity is not a criterion for truth.
Simplicity certainly plays an important part in physics, even as a
criterion for choosing between physical hypotheses. The significance
of simplicity as a means to knowledge will have to be carefully examined
in connection with the problem of induction, which does not fall within
the scope of this book.

34

§ 8. The Relativity of Geometry

Geometry is concerned solely with the simplicity of a definition, and
therefore the problem of empirical significance does not arise. Itisa
mistake to say that Euclidean geometry is ‘“more true’’ than Einstein’s
geometry or vice versa, because it leads to simpler metrical relations.
We said that Einstein’s geometry leads to simpler relations because
in it ¥ =0. But we can no more say that Einstein’s geometry is
“truer”’ than Euclidean geometry, than we can say that the meter is a
“truer”’ unit of length than the yard. The simpler system is always
preferable; the advantage of meters and centimeters over yards and

Paraphrase
of the G+F

feet is only a matter of economy and has no bearing upon reality. /777l

Properties of reality are discovered only by a combination of the results
of measurement with the underlying coordinative definition.

Taken alone, the statement that a certain geometry holds for space
is therefore meaningless. It acquires meaning only if we add the
coordinative definition used in the comparison of widely separated
lengths. The same rule holds for the geometrical shape of bodies.
The sentence ‘“ The earth is a sphere”’ is an incomplete statement, and
resembles the statement ““ This room is seven units long.” Both state-
ments say something about objective states of affairs only if the assumed
coordinative definitions are added, and both statements must be
changed if other coordinative definitions are used. These considera-
tions indicate what is meant by relativity of geometry.

This conception of the problem of geometry is essentially the result
of the work of Riemann, Helmholtz, and Poincaré and is known as
conventionalism. While Riemann prepared the way for an application
of geometry to physical reality by his mathematical formulation of
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the concept of space, Helmholtz laid the philosophical foundations.
In particular, he recognized the connection of the problem of geometry
with that of rigid bodies and interpreted correctly the possibility of a
visual representation of non-Euclidean spaces (cf. p. 63). It is his
merit, furthermore, to have clearly stated that Kant’s theory of space
is untenable in view of recent mathematical developments.! Helm-
holtz’ epistemological lectures must therefore be regarded as the
source of modern philosophical knowledge of space.2 It is Einstein's
achievement to have applied the theory of the relativity of geometry
to physics. The surprising result was the fact that the world is non-
Euclidean, as the theorists of relativity are wont to say; in our language
this means: if F = 0, the geometry G becomes non-Euclidean. This
outcome had not been anticipated, and Helmholtz and Poincaré still
believed that the geometry obtained could not be proved to be different
from Euclidean geometry. Only Einstein’s theory of gravitation
predicted the non-Euclidean result which was confirmed by astro-
nomical observations. The deviations from Euclidean geometry,
however, are very small and not observable in everyday life.
Unfortunately, the philosophical discussion of conventionalism,
misled by its ill-fitting name, did not always present the epistemological
aspect of the problem with sufficient clarity.3 From conventionalism
the consequence was derived that it is impossible to make an objective
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statement about the geometry of physical space, and that we are
dealing with subjective arbitrariness only; the concept of geometry
of real space was called meaningless. This is a misunderstanding.
Although the statement about the geometry is based upon certain
arbitrary definitions, the statement itself does not become arbitrary:
once the definitions have been formulated, it is determined through
objective reality alone which is the actual geometry. Let us use our
previous example: although we can define the scale of temperature
arbitrarily, the indication of the temperature of a physical object does
not become a subjective matter. By selecting a certain scale we can
stipulate a certain arbitrary number of degrees of heat for the respective
body, but this indication has an objective meaning as soon as the
coordinative definition of the scale is added. On the contrary, it is
the significance of coordinative definitions to lend an objective meaning
to physical measurements. As long as it was not noticed at what
points of the metrical system arbitrary definitions occur, all measuring
results were undetermined; only by discovering the points of arbitrari-
ness, by identifying them as such and by classifying them as definitions
can we obtain objective measuring results in physics. The objective
character of the physical statement is thus shifted to a statement about
relations. A statement about the boiling point of water is no longer
regarded as an absolute statement, but as a statement about a
relation between the boiling water and the length of the column of
mercury. There exists a similar objective statement about the
geometry of real space: if is a statement about a relation berween the
universe and rigid rods. The geometry chosen to characterize this
relation is only a mode of speech; however, our awareness of the
relativity of geometry enables us to formulate the objective character
of a statement about the geometry of the physical world as a statement
about relations. In this sense we are permitted to speak of physical
geometry. The description of nature is not stripped of arbitrariness by
naive absolutism, but only by recognition and formulation of the
points of arbitrariness. The only path to objective knowledge leads
through conscious awareness of the role that subjectivity plays in our
methods of research.
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